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Abstract

We discuss efficient near-field to far-field transformation
algorithms that relax the usual restriction that data points be
located on regular grids on special surfaces (planar,

. spherical, or cylindrical). :
Introduction

It is not always practical or desirable to make
uniformly spaced measurements; for example, the
maintenance of positioning tolerances becomes more
difficult as frequency is increased. Our method can
(1) extend the frequency ranges of existing scanners,
(2) make practical the use of portable scanners for
on-site measurements, and (3) support schemes, such
as plane-polar scanning, where data are intentionally
collected on alternative grids.

Although “ideal” locations are not required, the
actual probe positions must be known. We use a laser
tracking device for this purpose. Typical laser tracker
uncertainties do not exceed positioning tolerance
requirements of 1/50 to A/100 for microwave
frequencies up to several hundred gigahertz. The
laser tracker determines the location of a
retroreflector located near the probe (Figure 1).
Position and RF measurements -are triggered
simultaneously.

Theory

Theory establishes a linear relationship
w=Qg (0

between the measurement vector w and the vector of
unknown coefficients & that describe the radiation
pattern of the antenna. The matrix Q is a known
function of probe position. The number N? of
coefficients can be estimated with '

N=Kka, @)

where X is a constant of order unity, k= 27/, and a
is the radius of the smallest sphere that contains the
test antenna. Generally, the number of measurements
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exceeds the number of unknowns and (1) is solved in
the least-square sense.

When probe positioning is ideal, the planar and
cylindrical scanning algorithms can find & in
O(N? In N) operations. The computational complexity
of the spherical scanning algorithm is ONV?). In
contrast, straightforward Gaussian elimination is
O(N°). For typical problem sizes (10 <N < 10%), the
importance of computational efficiency is readily
apparent.

In our approach to position correction, we use an
iterative procedure (conjugate gradient) to find &, The
complexity of each iteration is of the same order as
the ideal positioning case. The number of iterations
depends on desired computational accuracy and on
conditioning (but not on N).

Detailed accounts of probe-position correction
algorithms for planar and spherical scanning may be
found in [1] and [2]. NIST software is available for
these cases.

Example

Consider a radiometer antenna with an aperture
diameter of 25 cm and an operating frequency of
31.65 GHz. The planar near-field data consist of 161
points in x by 161 points in y ideally spaced by 0.38
cm (0.41). A phase gradient was introduced to steer
the main beam 30° from boresight. Position errors
were then simulated by using (1) to calculate the
probe response at nonideal measurement locations. In
this setup, there are about 26,000 simulated
measurements and about 20,000 unknowns.

Figure 2 shows the result for a case with a peak
position error of 1.11 and an rms error of 0.521.
(These errors are extreme compared to the desired
tolerances of 4/50 to 1/100).

The pattern computed ignoring probe position errors
bears little resemblance to the correct pattern—the
main beam is no longer recognizable. If we correct
only for the z position errors, which are generally
considered more significant that the transverse errors,




much of the true pattern is recovered. However, the
gain is still about 1 dB low, and there are anomalous

_sidelobes. There is no discernible difference between -

the actual and the fully position corrected patterns.
Conclusions
The algorithms discussed here are robust alternatives

to complicated mechanical schemes designed to
reduce probe position errors. In principle,

computational uncertainties can be reduced fo
insignificance
uncertainty.

compared to other sources of

Figure 1. Laser tracker set up for recording probe
position.
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Figure 2. H-plane pattern of an antenna with a
steered beam. The solid line corresponds to the
corrected and to the actual pattern. The dashed line
shows the result of ignoring the position errors. The
dash-dotted line is the result of correcting for only
the z position errors.
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